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Abstract—This paper deals with the design and performance
analysis of a three-phase single stage solar photovoltaic in-
tegrated unified power quality conditioner (PV-UPQC). The
PV-UPQC consists of a shunt and series connected voltage
compensators connected back to back with common DC-link.The
shunt compensator performs the dual function of extracting
power from PV array apart from compensating for load current
harmonics. An improved synchronous reference frame control
based on moving average filter is used for extraction of load
active current component for improved performance of the PV-
UPQC. The series compensator compensates for the grid side
power quality problems such as grid voltage sags/swells. The
compensator injects voltage in-phase/out of phase with point of
common coupling (PCC) voltage during sag and swell conditions
respectively. The proposed system combines both the benefits
of clean energy generation along with improving power quality.
The steady state and dynamic performance of the system are
evaluated by simulating in Matlab-Simulink under a nonlinear
load. The system performance is then verified using a scaled
down laboratory prototype under a number of disturbances such
as load unbalancing, PCC voltage sags/swells and irradiation
variation.

Index Terms—Power Quality, shunt compensator, series com-
pensator, UPQC, Solar PV, MPPT.

I. INTRODUCTION

With the advancement in semiconductor technology, there is
an increased penetration of power electronic loads. These loads
such as computer power supplies, adjustable speed drives,
swtiched mode power supplies etc. have very good efficiency,
however, they draw nonlinear currents. These nonlinear cur-
rents cause voltage distortion at point of common coupling
particularly in distribution systems. There is also increasing
emphasis on clean energy generation through installation of
rooftop PV systems in small apartments as well as in com-
mercial buildings [1], [2]. However, due to the intermittent
nature of the PV energy sources, an increased penetration
of such systems, particularly in weak distribution systems
leads to voltage quality problems like voltage sags and swells,
which eventually instability in the grid [3]–[7]. These voltage
quality problems also lead to frequent false tripping of power
electronic systems, malfunctioning and false triggering of
electronic systems and increased heating of capacitor banks
etc [8]–[10]. Power quality issues at both load side and grid
side are major problems faced by modern distribution systems.

Due to the demand for clean energy as well as stringent
power quality requirement of sophisticated electronic loads,
there is need for multifunctional systems which can integrate
clean energy generation along with power quality improve-
ment. A three phase multi-functional solar energy conversion
system, which compensates for load side power quality issues

has been proposed in [11], [12]. A single phase solar pv
inverter along with active power filtering capability has been
proposed in [13], [14]. Major research work has been done
in integrating clean energy generation along with shunt active
filtering. Though shunt active filtering has capability for both
load voltage regulation, it comes at the cause of injecting
reactive power. Thus shunt active filtering cannot regulate
PCC voltage as well as maintain grid current unity power
factor at same time. Recently, due to the stringent voltage
quality requirements for sophsiticated electronics loads, the
use of series active filters has been proposed for use in
small apartments and commercial buildings [15], [16]. A solar
photovoltaic system integrated along with dynamic voltage
restorer has been proposed in [17]. Compared to shunt and
series active power filters, a unified power quality conditioner
(UPQC), which has both series and shunt compensators can
perform both load voltage regulation and maintain grid current
sinusoidal at unity power factor at same time. Integrating
PV array along with UPQC, gives the dual benefits of clean
energy generation along with universal active. The integration
of PV array with UPQC has been reported in [18]–[20].
Compared to conventional grid connected inverters, the solar
PV integrated UPQC has numerous benefits such as improving
power quality of the grid, protecting critical loads from grid
side disturbances apart from increasing the fault ride through
capability of converter during transients. With the increased
emphasis on distributed generation and microgrids, there is a
renewed interest in UPQC systems [21], [22].

Reference signal generation is a major task in control of PV-
UPQC. Reference signal generation techniques can be broadly
divided into time-domain and frequency domain techniques
[8]. Time domain techniques are commonly used because of
lower computational requirements in real-time implementa-
tion. The commonly used techniques include instantaneous
reactive power theory (p-q theory), synchronous reference
frame theory (d-q theory) and instantaneous symmetrical com-
ponent theory [23]. The main issue in use of synchronous
reference frame theory based method is that during load
unbalanced condition, double harmonic component is present
in the d-axis current. Due to this, low pass filters with very
low cut off frequency is used to filter out double harmonic
component. This results in poor dynamic performance [24]. In
this work, a moving average filter (MAF) is used to filter the
d-axis current to obtain fundamental load active current. This
gives optimal attenuation and without reducing the bandwidth
of the controller [25]. Recently, MAF has been applied in
improving performance of DC-link controllers as well as for
grid synchronization using phase locked loop (PLL). [26],
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[27].
In this paper, the design and performance analysis of a three-

phase PV-UPQC are presented. An MAF based d-q theory
based control is used to improve the dynamic performance
during load active current extraction. The main advantages of
the proposed system are as follows,

• Integration of clean energy generation and power quality
improvement.

• Simultaneous voltage and current quality improvement.
• Improved load current compensation due to use of MAF

in d-q control of PV-UPQC.
• Stable under various dynamic conditions of voltage

sags/swells, load unbalance and irradiation variation.
The performance of the proposed system is analyzed exten-
sively under both dynamic and steady state conditions using
Matlab-Simulink software. The performance is then experi-
mentally verified using a scaled down laboratory prototype
under various conditions experienced in the distribution system
such as voltage sags/swells, load unbalance and irradiation
variation.

II. SYSTEM CONFIGURATION AND DESIGN

The structure of the PV-UPQC is shown in Fig.1. The
PV-UPQC is designed for a three-phase system. The PV-
UPQC consists of shunt and series compensator connected
with a common DC-bus. The shunt compensator is connected
at the load side. The solar PV array is directly integrated
to the DC-link of UPQC through a reverse blocking diode.
The series compensator operates in voltage control mode
and compensates for the grid voltage sags/swells. The shunt
and series compensators are integrated to the grid through
interfacing inductors. A series injection transformer is used
to inject voltage generated by the series compensator into the
grid. Ripple filters are used to filter harmonics generated due
to switching action of converters. The load used is a nonlinear
load consisting of a bridge rectifier with a voltage-fed load.
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Fig. 1. System Configuration PV-UPQC

A. Design of PV-UPQC

The design procedure for PV-UPQC begins with the proper
sizing of PV array, DC-link capacitor, DC-Link voltage level
etc. The shunt compensator is sized such that it handles the
peak power output from PV array apart from compensating for
the load current reactive power and current harmonics. As the
PV array is directly integrated to the DC-link of UPQC, the PV
array is sized such that the MPP voltage is same as desired DC-
link voltage. The rating is such that, under nominal conditions,
the PV array supplies the load active power and also feeds
power into the grid. The detailed PV array specifications are
given in Appendix A. The other designed components are the
interfacing inductors of series and shunt compensators and
series injection transformer of the series compensator. The
design of PV-UPQC is elaborated as follows.

1) Voltage Magnitude of DC-Link: The magnitude of DC-
link voltage Vdc depends on the depth of modulation used
and per-phase voltage of the system. The DC-link voltage
magnitude should more than double the peak of per-phase
voltage of the three phase system [8] and is given as,

Vdc =
2
√
2VLL√
3m

(1)

where depth of modulation (m) is taken as 1 and VLL is the
grid line voltage. For a line voltage of 415 V, the required
minimum value DC-bus voltage is 677.7 V. The DC-bus
voltage is set at 700 V(approx), which is same as the MPPT
operating voltage of PV array at STC conditions.

2) DC-Bus Capacitor Rating: The DC-link capacitor is
sized based upon power requirement as well as DC-bus voltage
level. The energy balance equation for the DC-bus capacitor
is given as follows [8],

Cdc =
3kaVphIsht

0.5× (V 2
dc − V 2

dc1)

=
3× 0.1× 1.5× 239.6× 34.5× 0.03

0.5× (7002 − 677.792
)

= 9.3mF (2)

where Vdc is the average DC-bus voltage, Vdc1 is the lowest
required value of DC-bus voltage,a is the overloading factor,
Vph is per-phase voltage, t is the minimum time required for
attaining steady value after a disturbance, Ish is per-phase
current of shunt compensator, k factor considers variation in
energy during dynamics.

The minimum required DC-link voltage is Vdc1 = 677.69 V
as obtained from (2), Vdc = 700 V, Vph= 239.60 V,Ish=57.5
A, t= 30 ms, a = 1.2, and for dynamic energy change = 10%,
k= 0.1, the value of Cdc is obtained as 9.3 mF.

3) Interfacing Inductor for Shunt Compensator: The in-
terfacing inductor rating of the shunt compensator depends
upon the ripple current, the switching frequency and DC-link
voltage. The expression for the interfacing inductor is as,

Lf =

√
3mVdc

12afshIcr,pp
=

√
3× 1× 700

12× 1.2× 10000× 6.9

= 800μH ≈ 1mH (3)
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where m is depth of modulation, a is pu value of maximum
overload, fshis the switching frequency , Icr,pp is the inductor
ripple current which is taken as 20% of rms phase current of
shunt compensator. Here, m=1, a=1.2, fsh=10kHz, Vdc=700V,
one gets 800 μH as value. The value chosen is approximated
to 1mH.

4) Series Injection Transformer: The PV-UPQC is designed
to compensate for a sag/swell of 0.3 pu i.e 71.88 V. Hence, the
required voltage to be injection is only 71.88 V which results
in low modulation index for the series compensator when
the DC-link voltage is 700V. In order to operate the series
compensator with minimum harmonics, one keeps modulation
index of the series compensator near to unity. Hence a series
transformer is used with a turns ratio,

KSE =
VV SC

VSE
= 3.33 ≈ 3 (4)

The value obtained for KSE is 3.33. The value selected is 3.
The rating of series injection transformer is given as,

SSE = 3VSEISEsag = 3× 72× 46 = 10kV A (5)

The current through series VSC is same as grid current.
The supply current under sag condition of 0.3 pu is 46 A and
hence the VA rating of injection transformer achieved is 10
kVA.

5) Interfacing Inductor of Series Compensator: The rating
of interfacing inductor of the series compensator depends on
ripple current at swell condition, switching frequency and DC-
link voltage. Its value is expressed as,

Lr =

√
3×mVdcKSE

12afseIr
=

√
3× 1× 700× 3

12× 1.2× 10000× 7.1

= 3.6mH (6)

where m is the depth of modulation, a is the pu value of
maximum overload, fse is the switching frequency, Ir is the
inductor current ripple, which is taken to be 20% of grid
current. Here, m=1, a=1.5, fse=10 kHz, Vdc=700 V and 20%
ripple current, one gets 3.6 mH as selected value.

III. CONTROL OF PV-UPQC
The main subsystems of PV-UPQC are the shunt com-

pensator and the series compensator. The shunt compensator
compensates for the load power quality problems such as load
current harmonics and load reactive power. In case of PV-
UPQC, the shunt compensator performs the additional function
of supplying power from the solar PV array. The shunt
compensator extracts power from the PV-array by using a
maximum power point tracking (MPPT) algorithm. The series
compensator protects the load from the grid side power quality
problems such as voltage sags/swells by injecting appropriate
voltage in phase with the grid voltage.

A. Control of Shunt Compensator

The shunt compensator extracts the maximum power from
the solar PV-array by operating it at its maximum power
point. The maximum power point tracking (MPPT) algorithm
generates the reference voltage for the DC-link of PV-UPQC.

Some of the commonly used MPPT algorithms [28] are Per-
turb and Observe (P& O) algorithm, incremental conductance
algorithm (INC). In this work, (P& O) algorithm is used for
implementing MPPT. The DC-link voltage is maintained at
the generated reference by using a PI-controller.

To perform the load current compensation, the shunt com-
pensator extracts the active fundamental component of the load
current. For this work, the shunt compensator is controlled by
extracting fundamental active component of load current using
SRF technique. The control structure of shunt compensator is
shown in Fig. 2. The load currents are converted to d-q-0 do-
main using the phase and frequency information obtained from
PLL. The PLL input is the PCC voltage. The d-component
of the load current (ILd) is filtered to extract DC component
(ILdf ) which represents the fundamental component in abc
frame of reference. To extract DC component without dete-
riorating the dynamic performance, a moving average filter
(MAF) is used to extract the DC component. The transfer
function of moving average filter is given as,

MAF (s) =
1− e−Tws

Tws
(7)

where Tw is the window length of the moving average filter.
As the lowest harmonic present in the d-axis current is double
harmonic component, Tw is kept at half of fundamental time
period. The MAF has unity DC gain and zero gain integer
multiples of window length.

The equivalent current component due to PV array is given
as,

Ipvg =
2

3

Ppv

Vs
(8)

where Ppv is the PV array power and Vs is the magnitude of
the PCC voltage. The reference grid current in d-axis is given
as

I∗sd = ILdf + Iloss − Ipvg (9)

I∗sd is converted to abc domain reference grid currents. The
reference grid currents are compared with the sensed grid
currents in a hysteresis current controller to generate the gating
pulses for the shunt converter.
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B. Control of Series Compensator
The control strategy for the series compensator are pre-

sag compensation, in-phase compensation and energy optimal
compensation. A detailed description of various compensation
strategies used for control of series compensator is reported
in [29], [30] In this work, the series compensator injects
voltage in same phase as that of grid voltage, which results
in minimum injection voltage by the series compensator. The
control structure of the series compensator is shown in Fig.3.
The fundamental component of PCC voltage is extracted using
a PLL which is used for generating the reference axis in d-
q-0 domain. The reference load voltage is generated using
the phase and frequency information of PCC voltage obtained
using PLL. The PCC voltages and load voltages are converted
into d-q-0 domain. As the reference load voltage is to be in
phase with the PCC voltage, the peak load reference voltage
is the d-axis component value of load reference voltage. The
q-axis component is kept at zero. The difference between
the load reference voltage and PCC voltage gives the ref-
erence voltage for the series compensator. The difference
between load voltage and PCC voltage gives the actual series
compensator voltages. The difference between reference and
actual series compensator voltages is passed to PI controllers
to generate appropriate reference signals. These signals are
converted to abc domain and passed through pulse width
modulation (PWM) voltage controller to generate appropriate
gating signals for the series compensator.
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IV. SIMULATION STUDIES

The steady state and dynamic performances of PV-UPQC
are analyzed by simulating the system in Matlab-Simulink
software. The load used is a nonlinear load consisting of three
phase diode bridge rectifier with R-L load. The solver step
size used for the simulation is 1e-6s. The system is subjected
to various dynamic conditions such as sag and swell in PCC
voltage and PV irradiation variation. The detailed system
parameters are given in Appendix.

A. Performance of PV-UPQC at PCC Voltage Fluctuations
The dynamic performance of PV-UPQC under conditions of

PCC voltage sags/swells is shown in Fig.4. The irradiation(G)

is kept at 1000W/m2. The various sensed signals are PCC
voltages (vs), load voltages(vL), series compensator voltages
(vSE), DC-link voltage (Vdc), solar PV array current (Ipv),
solar PV array power (Ppv), grid currents (iS), load currents
(iLa, iLb, iLc), shunt compensator currents (iSHa, iSHb, iSHc).
Between 0.7s and 0.75s, there is voltage sag of 0.3pu and
from 0.8s to 0.85s there is voltage swell of 0.3pu. The series
compensator compensates for the grid voltage under these
conditions by injecting a suitable voltage vSE in opposite
phase with the grid voltage disturbance to maintain the load
voltage at rated voltage condition.
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Fig. 4. Performance of PV-UPQC under Voltage Sag and Swell Conditions

B. Performance of PV-UPQC at Load Unbalancing Condition

The dynamic performance of PV-UPQC under load unbal-
ance condition is shown in Fig.5. At t=0.8s, phase ’b’ of the
load is disconnected. It can be observed that the grid current
is sinusoidal and at unity power factor. The current fed into
the grid rises leading due to the reduction in the total effective
load. The DC-link voltage is also stable and it is maintained
near its desired regulated value of 700 V.
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Fig. 5. Performance PV-UPQC during Load Unbalance Condition

C. Performance of PV-UPQC under Varying Irradiation

The dynamic performance of PV-UPQC under varying solar
irradiation is shown in Fig.6. The solar irradiation is varied
from 500W/m2 at 0.8s to 1000W/m2 at 0.85s. It is observed
that as irradiation increases, the PV array output increases
and hence grid current rises as the PV array is feeding power
into the grid. The shunt compensator tracks MPPT along with
compensating for the harmonics due to load current.

The harmonic spectra and THD load current and grid current
are shown in Fig. 7 and Fig.8. It is observed that the load
current THD is 26.31% and the grid current THD is 2.00%
thus meeting the requirement of IEEE-519 standard [31].

V. EXPERIMENTAL RESULTS

The PV-UPQC behavior under steady state and dynamic
conditions are extensively analyzed on scaled down prototype
developed in laboratory. A solar array simulator (AMTEK
ETS 600*17DPVF) is used to generate power characteristics
similar to a PV array. The shunt and series compensators are
realized by using two voltage source converters (SEMIKRON-
MD B6CI 750/415-35F) with a common DC-link. The three

Fig. 6. Performance PV-UPQC at Varying Irradiation Condition
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phase nonlinear load is realized using a bridge rectifier along
with an R-L load. The control is realized using a dSPACE Mi-
crolabBox DSP controller. The performance of the prototype
under steady state and dynamic conditions are explained in
the following sections. The detailed experimental parameters
are given in Appendix.

A. PV-UPQC Operation Under Steady State Condition

The operation of PV-UPQC system under steady state is
measured using three phase power analyzer (HIOKI 3310)
using 2 wattmeter measurement method. Channels 1 and 2 are
used for measuring PCC side voltage, current and power while
channels 3 and 4 are used for measuring load side voltage,
current and power.

Fig. 9 presents the performance of PV-UPQC system during
nominal condition. It can be observed that during nominal
condition even though load currents (ILa = Irms3, ILc =
Irms4) are nonlinear, the grid currents (Isa = Irms1, Isc =
Irms2) are sinusoidal and at near unity power factor (λ12).
Negative value of PCC power (P12) is due to the fact that
the power from PV array is more than the load demand (P34)
and extra power flows into PCC.

Figs. 10 and 11 present the performance of PV-UPQC
system during sag and swell conditions. During the voltage sag
condition, the PCC voltages (Vsab = V rms1, Vscb = V rms2)
are at 170V while during swell condition the PCC voltages rise
to 270V. It can be observed during both these conditions, the
load voltages (VLab = V rms3, VLcb = V rms4) are regulated
near the set point of 220 V. The power flows into grid as
PV array power exceeds load demand. It can be observed
that during all these conditions, the shunt compensator injects
active power from PV array and also compensates for load
current harmonics and reactive power. It can observed that
though the THDs of the load currents (Ithd3, Ithd4) are at
around 28%, the grid current THDs (Ithd1, Ithdd2) are within
IEEE-519 limit during nominal conditions.

B. PV-UPQC Performance Under Dynamic Condition

Fig. 12 shows the dynamic behavior of PV-UPQC. The re-
sponse of PV-UPQC is evaluated under various dynamic con-
ditions such as PCC voltage sags/swells, load unbalance con-
dition, and irradiation variation. Figs.12(a) and 12(b) present
PV-UPQC response during fluctuations in PCC voltage. The
recorded waveforms are PCC line voltage (vsab), load voltage
vLab, series compensator voltage (vSEab), and grid current isa.
Due to the limitations in oscilloscope channels only one phase
is shown.

During PCC voltage fluctuations vsab dips to 170 V and
rises to 270 V. The series compensator injects voltage in-
phase/out-of phase with respect to PCC voltage to maintain
vLab at 220 V. There is rise in isa during voltage sag condition
while there is a decrease in isa during voltage swell condition,
to maintain power balance in the system.

Fig. 12(c) presents PV-UPQC response under unbalanced
load condition. The signals presented are Vdc, isb, iSHb and
iLb. The grid current is maintained sinusoidal even though
the load is unbalanced. The shunt compensator current is

(a) Voltage and Current Waveforms of PCC Side and Load Side During
Nominal Condition

(b) Voltage, Current, Power and THD of PCC Side and Load Side During
Nominal Conditions

Fig. 9. PV-UPQC Performance Under Nominal Condition

(a) Voltage and Current Waveforms of PCC Side and Load Side During
Sag Condition

(b) Voltage, Current, Power and THD of PCC Side and Load Side During
Sag Conditions

Fig. 10. PV-UPQC Performance Under Sag Condition
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(a) Voltage and Current Waveforms of PCC Side and Load Side During
Sag Condition

(b) Voltage, Current, Power and THD of PCC Side and Load Side During
Sag Conditions

Fig. 11. PV-UPQC Performance Under Swell Condition

combination of active current from PV array and load current
harmonics. The DC-link voltage Vdc is regulated at its desired
value. Due to the overall decrease in load power under
unbalanced load condition, there is increase in isb as there
is more surplus PV power available to be fed into PCC.

vsab ( Ch 1: 500 V/div)

vLab ( Ch 2: 500V/div)

vSEab ( Ch 3: 200 V/div)

isa ( Ch 4: 20 A/div)

Sag

(a) PV-UPQC Behavior Under Sag

vsab ( Ch 1: 500 V/div)

vLab ( Ch 2: 500V/div)

vSEab ( Ch 3: 200 V/div)

isa ( Ch 4: 20A/div)

Swell

(b) PV-UPQC Behavior Under Swell

Vdc ( Ch 1: 500 V/div)

isb ( Ch 2: 20 A/div)

iSHb ( Ch 3: 20 A/div)

iLb ( Ch 4: 5 A/div)

Phase ‘b’ load removal

(c) PV-UPQC Behavior under Step
Change in Load

Vpv ( Ch 1: 500 V/div)

isb ( Ch 2: 20 A/div)

iSHb ( Ch 3: 20 A/div)

Ipv ( Ch 4: 5 A/div) Irradiation increase

(d) PV-UPQC Behavior Under Irradia-
tion Change

Fig. 12. Dynamic Performance of PV-UPQC

Fig. 12(d) captures the PV-UPQC response during change
in solar irradiation intensity. The waveforms captured are
Vpv , Ipv , iSHb and isb. The PV irradiation is increased
from 500W/m2 to 1000W/m2. It can be observed that as
irradiation increases, the available PV array power increases
thus the shunt compensator current and consequently the

current fed into grid increases. Fig. 13 presents tracking
efficiency at 1000W/m2 and 500W/m2. Table. I shows the
MPPT efficiency as well as other parameters during the other
intermediate irradiation conditions. Under all the irradiation
condition,s the system is able to track MPPT with an efficiency
more than 99%.

12.41 A

375.83V

P-
V C

ur
ve

(a) MPPT Tracking Performance at
G = 1000W/m2

6.383 A

365.03V

P-
V C

ur
ve

(b) MPPT Tracking Performance at
G = 500W/m2

Fig. 13. MPPT tracking performance of PV-UPQC

The main internal signals involved PV-UPQC control are
presented in Fig. 14. Fig. 14(a) captures the internal signals
involved in shunt compensator control. The signals captured
are load current of phase ’a’ iLa, load current of phase ’b’
iLb, load current in in d axis in d-q frame ILd and filtered
d-axis load current ILdf . The internal signals are captured
during condition when phase ’b’ load is disconnected. It can be
observed that load unbalancing results in presence of 100Hz
harmonic component in d-axis current. This is then filtered
using a moving average filter to extract the DC component
which represents the fundamental active component in sta-
tionary reference frame.

Fig. 14(b) presents main internal signals involved in series
compensator control. The captured signals are d-axis signals
of PCC voltage Vsd, load voltage vLd, Vsed and q-axis signal
of series VSC (Vseq). During voltage sag condition, Vsd

decreases, consequently the VSEd increases thus regulating
the VLd at its desired value. The q-axis component of series
voltage is zero showing that the voltage injected by series
compensator is in-phase with the PCC voltage.

The performance improvement with the use of MAF in d-q
control of PV-UPQC is presented in Fig. 14(c). The signals
shown are iLb, ILd, filtered d-axis current component using
first order low pass filter (ILd lpf ) and filtered d-axis current
component using MAF (ILd MAF ). It can be observed that
even though the cut-off frequency of low pass fiter is 10Hz,
there are some ripples present inILd lpf . However, d-axis
component filtered using MAF gives very good attenuation
and improved dynamic response.

VI. CONCLUSION

The design and dynamic performance of three-phase PV-
UPQC have been analyzed under conditions of variable ir-
radiation and grid voltage sags/swells. The performance of
the system has been validated through experimentation on
scaled down laboratory prototype. It is observed that PV-
UPQC mitigates the harmonics caused by nonlinear load and
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TABLE I
PV TRACKING EFFICIENCY

SL.No G(W/m2) Vmpp(V ) Impp(A) Pmpp(W ) Vpv(V ) Ipv(A) Ppv(W ) Efficiency(%)

1 1000 371.6 12.6 4672.3 375.8 12.4 4662.6 99.79
2 900 369.9 11.4 4216.1 369.0 11.4 4206.6 99.78
3 800 368.0 10.1 3738.9 370.1 10.1 3738.1 99.97
4 700 365.8 8.9 3255.6 366.3 8.8 3255.6 99.57
5 600 363.3 7.7 2797.4 361.9 7.7 2786.6 99.61
6 500 360.4 6.5 2342.6 365.0 6.4 2336.0 99.74

iLb (Ch 1: 5A/div)

iLa (Ch 1: 5A/div)

ILd  (Ch 1: 5A/div)

ILd_MAF  (Ch 1: 5A/div)

Phase ‘b’ load removal

(a) Internal Signals of Shunt Compensator

Vsd (Ch 1: 200 V/div)

VLd (Ch 2: 200 V/div)

VSE (Ch 3: 50 V/div)

VSEq (Ch 4: 50 V/div)

Sag in PCC Voltage

(b) Internal Signals of Series Compensator

iLb (Ch 1: 5A/div)

ILd (Ch 1: 5A/div)

ILd_Lpf  (Ch 1: 5A/div)

ILd_MAF  (Ch 1: 5A/div)

Load Removal in Phase ‘b’

Using 1st order Low Pass Filter 
(Cut-off Frequency = 10 Hz)

Using Moving Average 
Filter

(c) Performance comparison in Load Active Compo-
nent Extraction

Fig. 14. Salient Internal Signals in PV-UPQC control

maintains the THD of grid current under limits of IEEE-519
standard. The system is found to be stable under variation of
irradiation, voltage sags/swell and load unbalance. The perfor-
mance of d-q control particularly in load unbalanced condition
has been improved through the use of moving average filter.
It can be seen that PV-UPQC is a good solution for modern
distribution system by integrating distributed generation with
power quality improvement.
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APPENDIX A
SIMULATION PARAMETERS

PCC Line Voltage: 415 V, 50 Hz; Load: Current Fed Bridge
Rectifier Load (14.8kW); DC-link Voltage: 700 V; DC-link
Capacitor: 9.3 mF; Shunt compensator interfacing inductor:
1 mH; PWM Switching frequency of VSC: 10 kHz; Ripple
Filter: 10μF, 10Ω; series compensator interfacing inductor: 3.6
mH; DC-link PI controller gains: Kp = 1.5, Ki = 0.1; Series
VSC PI gains for d and q axis : Kp = 8,Ki = 1200;

PV array parameters: Voc = 864 V, Isc = 62.65 A; Vmpp =
701 V; Impp = 58.94 A; Ppv= 41.35 kW

APPENDIX B
EXPERIMENTAL PARAMETERS

PCC Line Voltage: 220 V, 50 Hz; Load: Current Fed Bridge
Rectifier Load 750 W; DC-link Voltage: 700 V; DC-link
Capacitor: 3.3 mF; Shunt compensator interfacing inductor:
4 mH; PWM Switching frequency of VSC: 10 kHz; Ripple
Filter: 20μF, 5Ω; series compensator interfacing inductor: 0.5

mH; DC-link PI controller gains: Kp = 2.5, Ki = 1.1; Series
VSC PI gains for d and q axis : Kp = 5 ,Ki = 800;

PV array parameters: Voc = 415 V, Isc = 13 A; Vmpp = 371
V; Impp = 12.57 A; Ppv= 4.62 kW
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